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1. I TRODUCTION

Suppose XIX2,... are independent random variables, each with

cumulative distribution function F(x) and density f(x). Let

Y 0a1x(Xi9X2 "...Xn)1 n - 1,2,... and define a stopping rule N

by

(1) N - first integer n > I for which Yn t (bn'an) '

where {an ) and (b ) are sequences of real numbers and typically non-

decreasing since (Y n is stochastically increasing with n. Then,

for n> 2

P(N>n) - P(bi<YI<a,, .bnlYnj l n,b n <Y n<an)

-P (bi<Yi<a:Li il,2,..., n-I) P(bnI<Yn<%n b i<Y i<ai, i-l,2, ... , n-1 )

-P(n-l)P(bn<Yn<an lbn_<Ynl<an_) since the sequence (Yn}  is

Mrkov. Thus induction gives
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PO~n) PN~li'T P(bici<ailbi<iriiaii,)
?QI~u)- ?(N 1 -2

For b i &ii, P(biCYi<ail bii<Yii<ai_..) - P(bi<XiLai)

mF(aiL)-F(bi), though typically bi ! ,_ for each i > 1.

Henceforth we will make this assumption, in which case

P(b CTI <Y -,<,, F ( l( i-i. p

P(b i Yi~ai~biiCYIiaii) - F(ai)[F i (a ii-1 Fi- (b 1-)]

-w(b )I i-I (b1) - Fi(b iQI

ad, for I > 2,

P(biCYi~ai Ibii(<Yi<a -)

- ( a ) F ( b ~ ) [ 1 bI ) i hb i . . )

ftus, since ?(JI > 1) - F(a )-F(b 1 ) , for n > 2

(2X) - [ F(a I)-F(bl FT F(a)Fb) i)-Fib:I ( 1 ) 

Suppose we consider procedures truncated at some integer N,
say, In vbkch case ax - big. (This possible violation of our
assuption for the pair a..,,b, does not effect any of our

2



calculations.) We can now find expressions for any of the moments

of N using (2). In particular,

B30N) - P01> n) I + F(a )-F(b 1 )

n-O

+ [F(a I)-F(b) V TT F(a I)..Y(bi)[ ( 1 - b 1

n -2 -2 bl (bi 1

Suppose further that F depends on a single unknown parameter

(and hence we attach. a subscript e to 7) and that % is a

hypothesis about the value of -0 to be tested using a sequential
procedure with stopping rule of the form (1) and with decision

rule

.(4) reject o If Yx > a , accept NO  if T<bN.

For such a procedure, for n > 2,

POOw=n,reject no ) - Pe (b<Yi ai,... ,bnl<YnI<an_1,Yn>an

- O(b Yl<al,..., bnc<yn-il,- 1 ,X _% )

a P, (W, > n-I) (XU . %) 3



ece, using (2), the procedure has power function

9(6) " P (reject 1o) - E Pe(ONn,reJect Ho)n-21

- 1-FO(a1 ) + [F.(al)-Fe(bl)] I I-Fe(a 2)A

(5) N le') I

+ (Fi)- . (b1) I Y [l-F,(a,)
n-3

.l rFj (b I -F e( i1

If the decisions to reject and accept % are reversed in (4),

then of course the power function is one minus the expression in

0). The expected sample size, vhich we now denote by E001),

Is given by (3) with F replaced by F0 " Equations (3) and (5)

hold with X - . for untruncated procedures.

Suppose now that the density corresponding to F(x) is f 0 (x),

where fe(x) - c(e)g(x) for x £ (0,0) and f (x) - 0 otherwise and

g(x) is a known function. This includes the case in which fe(x) is

a specified density g(x) truncated at the unknown point x n 0. If

Glx) - g(u)du, then c(O) - 1/G(9).

For the class of distributions {f0(x), 6 > 01, Yn n uax(Xl'X 2  "'-**Xn)

is sufficient for 6 for a fixed sample size procedure with sample size

a and hence by Pay's los (see, for example, Lehman- (1949)), YN and N

are Jcdnt sufficient for 0 fbr a sequential procedure based on the

stopping rule I defined In (1). Witiout loss of generality we will

restrict the discussion henceforth to the Uniforn distribution on (Ope)

sine, If X has density fg(x), then the random variable G(X) has

Me U.ftz density n (o,(0)).
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2. OPTIMA PHOCEDURES

We wil restr .ect the discussion to follow to tests of a hypothesis

of the form H: 0 against the alternative H: 8 > 0o , where

00  is a specified constant. It is vell known (see, for example, Lehmann

(1959)) that for random samples of fixed size n from the Uniform

distribution on (0,6), G eery size a test based on YR is uniformly

most powerful for testing No against H1 . The procedure which minimizes

the power function uniformly for a < 60 is the one with critical region

Yn 2- 90C( 1a)/n. This procedure has power function 0(0) -

for > 0o(l-a)/ and PS(e) - 0 If 6 < 80 (l-a)/ n. The sample size

required for 0(e 1 ) - I-P for some specified e1 > o and P c (Ol) is

nMCIAS) - log (*F~)/o().

To avoid some algebraic complications in the discussion to follow we vill

ignore the fact that n(a, ) is not usually an integer.

The question of whether or not we can Improve on the best fixed

sample size procedure through a sequential sampling plan now arises.

Thus we seek a sequential test with size a and power function equal to

- at e - and with expected sample size not larger than n(oP) for

m 0 and smaller than n(CjP) for sam *. The first procedure to

cam to mind is the. Sequential Probability Ratio Test (SPRT) of H= e- 00

versus HI: *-01 with error probabilities (p). Hoveer, the likeli-

hoo ratio is constant for x < 00, so ;hat the SPIM procedure reduces



to: reect H0 a soon an you observe an XjL greater than or equal to

90,otherwise accept HO after log (y)fog (t) observations. Thus

the 8PM necessarily has size i = 0. Its optimality property is preserved;

that is, among all tests with size = 0, the expected sample size is

minimized at both 0 = 00 and 0 = 01 . Clearly, the expected sample size

equals n(O,3) for 0 < Go, but is smaller than n(OP) for 0 > 60..

Tests with size zero are of limited interest and vhat we seek are sequential

tests, with size a > O, which are better than the corresponding fixed

sample size procedure and which are in some sense optimal.

Samuel-Cehn (1974) has considered truncated sequential procedures based

on a single sequence (a) with al < &<- -- <aM<-- 0 . Thus the stopping

and decision rules are as in (1) and (4), respectively, exoept that

b b2 m -0 an bK aM. The procedure is therefore to take

no more than X observations and accept No if and only if the boundary is

not reached. From (3) and (5),. expressions for the expected sample size and

pover function of such a procedure reduce to the folowing:

M-1l
19(N) -I + E 1 +), >.e

**,1.i=l

Plo) -(t-- , 0
M a

it MUMS that if P(e0 ) -a an P(e1) 1 -*, then I (

N 4,,1) - .- )l ,a Pij - l-(.and) (e)for 0 >Go.
0

thas the trunsation poaint equels the umber of observations required by

6i
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the best fixed sample size procedure and the power functions coincide for

0 >00.

Samel-Cahn hs proved that the procedure with boundary a = (La)e0 ,

a=- = a i= is optimal in the sense that Ee (N) is minimized

uniformly for a > e0  Thus a, takes care of the requirement that the

size is Ct > 0 and after that the procedure is of the same form as the

8PHT. Indeed, when a = 0 they are the same. However, despite the proven

optimality of the above procedure, the heavy emphasis on X, might make a

potential user of the scheme somewhat waxy of it. Thus in section 3

we consider a broader class of stopping rules. Before doing so,

suppose we attempt to formulate the fixed width confidence interval problem

in terms of a stopping rule of the form used by Samuel-Cahn for the hypothesis

testing problem. We see immediately that no matter how the a.' s are chosen,

Pe(NhI*) > 0 for some values of e. Truncation seems the obvious next step,

but with no knowledge of a it is impossible to determine a truncation value.

The only case in which this problem can be solved with a Samuel-Cahn type

stoppng rule is when 0 is known to be smaller than some constant 0, say,

In which case we can determine a truncation value M (depending on e0 of

course). For purposes of illustration, and indeed without loss of generality,

suppose we consider the unit length confidence interval (YN, Y+l). We find
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P(Y <e-1)-- (<- <_e , 1

k n-i a -k k a
(6) 1 IM .- 1('- )"] -:

e .2 li. .

ak+< < + k =

,waee the sum I to be taken as zero for k - 1.

hunm (6), given that we will not consider a boundary points larger

than go-l, we find that P0(y1 < 9-1)<_.r for a < o  if an o, y

if 2=... = 9,-o and M = log (%/log - ), the sampe size

required by the best fixed sample size -rocedure. Also,

N , ee-l

-a1)-1, 90-1 < 9 < go

Thus the above formulation leads to a procedure iihch is a slim

Siprovement over the best fixed sample size procedure since all it does

Is take care of the obvious defect of that procedure in that if you

observe an Xi > 00-1 you might as vell stop sampling since you now have

an interva -&Lch contains 0 with probability one.

. T O BOUJMAIM APPROACH

The question ow is vhether or not we can Improve on the above

optimal solution, In the sense of reducing the average sample size, by using

8
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a stopping rule of the form (1) and a decision rule of the form (4) with at

least one of blb 2 ,...,b,_1  nonzero. If we require the power function to

satisfy 1(3 0 ) = a and p(e 1 ) = 1-0, the truncation point must again be

M - n(C,P) since, if the procedure is truncated at some M and if the

acceptance region for HO is A, then A is a subset of the M-dimensional

cube with sides of length 80 and Po(YN C.A) = Vol(A)/eM = I-a. Also,

for e > e0 , P9 pi N A)= Vol(A)/ = (J.1a)(e 0 /,F , so that

ri8) = a-(l-a)(0/e)M for 0 > 00. Hence P(el) = 1-0 implies
14 - a,)

It is not difficult to see that, as in the fixed sample size problem,

not only do all size a tests have the same power function for e > 90.

but the power function is uniformly minimized by choosing the critical

region as far as possible from the origin. By the theorem which follows

this paragraph, this amounts to choosing ala,...,aM such that
N M
S . = (1a)6, in which case blb2,...,bM_1  are all necessarily

zero. It is not our main concern here to discuss in detail the procedure

ihiich uniformly minimizes P(e) for 9 < O0p though we easily find that

the procedure is the one with b- b 2 = --- = bMl = 0 and

a, - a2  ... - a = .eo(lC) l/M since the power function for every

procedure is zero for 8 < a and, in view of the lemma and since

& 1<a <- "" <a, , the largest possible value of al is eo(z )I/ .

Theorem: For every sequential test of H0 : < e 0 against H: 8 > 80

based on a stopping rule of the form (1) and a c..Lasion rule of the form

() and with power function 1(e) satisfying both 3(a0) and P(01) = 1-0

for ne a c (o,1) and a6 (o,1),
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N

1=1

m H() It a1 - (iac) 0o iand onlyif b, b 2  7 .... b,_, 0
i=1

Proon (Xl < alP X2 < a,'", < al1-1(< a,., Y2< ,.,,, YM < aI

(accept H0 )

M a
7hus P0 (Xl<alX <a2 ,..., <a.)= H (2) <1-13e) and (i) follows

by putting 9 = eo -

Frm (5) with F.(x) - X/O vs have

S1L (a 1-b )(9-a) ______) (6-an _____-i-_____ i- i-iI\
+ 2 + - E TT a4 -bI -{I-l

0 nF3- - i -i -

end,.if we define a= 1, b0 = 0 and b =0 and arrange the terms in

Increasing powers of 1/0 we have

bn-1 bn-1 "  - -

b H-1 b 1 -b 1  J 
_____

j. n1b n-/ 1 H -b Y i i-I1
-2 [, b n 1  n1il at'- -b '.%- ""n- =1 b -±[ i-l j

a=~ L-b~ i
(7.) -1 i-I1

It i now easy to see that if b= b2 = =bK , then (1-) M

since A(1) 0
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On the other hand, supos. at least one of blb 2 "...,bM-- is strictly

positive. Then, for 9 > j0 , the power function of the procedure is smaller

than the power function of a procedure with the same upper boundary, but

with each point in the lower boundary equal to zero. That is, from (7)

M
5(e) <i -I H-- a. for e>o.

om 1=1
M

Thus, if 11 ak = (l-a) 0 , then 1(eO) < a. This contradicts the assumption

- = M Mthat P'(8 0 ) = a and hence, from (i), H a < (1-a)0. The proof is now

complete.

We. can now prove that it is not possible to have a nonzero lower boundary

fbr the problem considered here. If we let

b " ,n- l n = 1,2, ... ,M- In_ 1 - n-1

I " bn.1 J

U-1
dl-" nd dg,=n % .(%-), c 2- 2,3,...,M-l, using (7) we can write

..

i-1 n = 1 1 -1 . 1

If x a,-( -aK, the lemmaimplie that b-b ... bl.O.
i-1 x M

Also from the lemma, if a ji L (1.a)0,, then a, < (l-a)e in

Ificah case a (1a)SON for some a, (o,1). Bat then

i-ai



N 01 1ic M log(---)/1og(~--). Thus, from

(8), since P = a and p(e)= 1-'P we must have

S M1K M 1 K-i M-1 -ni1 c I-
1/1 1 a "  - + H (i--)= d -+ R a

=l n-i i-i ~ i =1 n=.L i=l

M-I M- Mnor dOG n  E dn~d 1 But O0  and e1  are distinct and d.> 0

=l n=-i

for each n, %tere I <n <M-1 and hence dn = 0 for n = 12,...M-1

which implies that b, = b2 -... = bM_l =0-

It foflows that we cannot improve on the optimal single boundary procedure;

that is, stating the result for the class of distributions with densities

fr(x) = c(e)g(x), 0 < x < e, the stopping rule of the form (1) vhich

uniformly minimizes the average sample size for e > 00 is the one for

.idhich a F (a), a2,,i,...ax-,e0  and. bl,,b 2  ... =b..lm 0.

12
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